If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+15t-192=0
a = 1; b = 15; c = -192;
Δ = b2-4ac
Δ = 152-4·1·(-192)
Δ = 993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{993}}{2*1}=\frac{-15-\sqrt{993}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{993}}{2*1}=\frac{-15+\sqrt{993}}{2} $
| 9+x-7=35 | | 3(11x-3)=104 | | 0=-6x+x | | x/2+7=2*x-2*7 | | 2/42=3/x | | 3w-9=0.5w+16 | | 33(x+4)=5(x−2) | | |x|+7=19 | | 2/80=z/35 | | 2m+18=6 | | V=x(24-2x)(14-2x) | | 3(-8+3a)+3=35+a | | 3w-9=1/2w+16 | | c-21=17 | | 3/11=x/22 | | 5x+12=11x-8 | | 4n+4=8n+4 | | 5x+12=11x+8 | | 3(√x–1)=√(9x)+5 | | -(3-4m)=3m+3 | | 3/2x-1/6=4 | | -(1+5n)-3=-5n+3 | | (x+1)+2x+1)=17 | | 6(t-2)-4=t | | n-2=6+7n-8-6n | | 0.66z=9+0.5 | | 165=w-87 | | -4+2x=—6+7x | | 1+8x=5+x-6+6x | | (x+3)^3=25 | | 2x+14=-40—7x | | 8a+2a=3a |